267 research outputs found

    Effects of dietary fibre on behaviour and satiety in pigs

    Get PDF
    During the past decades there has been considerable interest in the use of dietary fibre in both animal and human nutrition. In human subjects dietary fibre has been studied intensively for possible effects on body-weight management and health. In animal nutrition the interest in dietary fibre has increased because it can be used as a cheap source of energy and because of its potential to improve animal welfare and reduce abnormal (mainly stereotypic) behaviour. Animal welfare is impaired if the diet does not provide sufficient satiety, combined with an environment that does not meet specific behavioural requirements related to natural feeding habits (e.g. rooting in pigs). A considerable proportion of the behavioural effects of dietary fibre are thought to be related to reduced feeding motivation. It has been hypothesized that: (1) bulky fibres increase satiety and thereby decrease physical activity and stereotypic behaviours immediately following a meal in pigs; (2) fermentable fibres prolong postprandial satiety and thereby reduce physical activity and appetitive behaviours for many hours after a meal. The validity of these hypotheses is examined by considering published data. In sows dietary fibres (irrespective of source) reduce stereotypic self-directed behaviours and substrate-directed behaviours, and to a lesser extent overall physical activity, indicating enhanced satiety shortly after a meal. Furthermore, fermentable dietary fibre reduces substrate-directed behaviour in sows and physical activity in sows and growing pigs for many hours after a meal. Evidence of long-term effects of poorly-fermentable fibre sources is inconclusive. The findings suggest that highly-fermentable dietary fibres have a higher potential to prolong postprandial satiet

    Symposium review : Macronutrient metabolism in the growing calf

    Get PDF
    Recent interest in increasing rates of body weight gain in heifer calves before weaning is based on the promise of an increase in milk production during first lactation. This increase is usually realized by increasing milk or milk replacer intake, delaying the onset of rumen development. Simultaneously feeding liquids and solid feeds brings about new challenges. Macronutrient metabolism in growing calves is reviewed, combining literature from heifer and veal calves with the objective to provide insights useful for developing novel feeding strategies. Growing calves are not efficiently retaining digested N when compared with other growing species. Energy and protein appear to be simultaneously limiting growth. With the possible exception of very young calves, low responses to incremental intakes of AA indicate that the limiting AA rarely explains the low efficiency of N utilization. Nonetheless, there are indications that disproportionate oxidation of AA as a result of AA imbalance may occur, notably in splanchnic tissues. Long-chain fatty acids, absorbed from the milk or calf milk replacer (CMR) are preferentially deposited as body fat, but this strongly depends on the need for ATP, fueled by the oxidation of carbohydrates. Hence, fatty acid oxidation typically decreases with an increased feeding level. Insulin sensitivity in calves is quite high at birth, but decreases independent of feeding strategy in early age to very low levels when compared with other species. Even though changes in insulin sensitivity may be provoked by early life nutrition, these effects are small and rather transient. In heavy calves, insulin sensitivity is invariably low. Large effects of dietary treatments on postprandial glucose and insulin responses, as often observed, are unlikely to be caused by differences in insulin sensitivity. Unlike in pigs, de novo fatty acid synthesis is not a significant route of disposal of glucose absorbed from the intestinal tract. Instead, high lactate fluxes in milk-fed calves suggest this may be an important route of disposal. When combining the feeding of milk or CMR with solid feeds, estimation of the contribution of the individual ration components is difficult, and interactions inside the gastrointestinal tract complicate the estimation of their feeding value. There are indications in veal calves that use of nutrients absorbed from a CMR is not dependent on the level of intake of solid feeds.</p

    Efficiency of fat deposition from nonstarch polysaccharides, starch and unsaturated fat in pig

    Get PDF
    The aim was to evaluate under protein-limiting conditions the effect of different supplemental energy sources: fermentable NSP (fNSP), digestible starch (dStarch) and digestible unsaturated fat (dUFA), on marginal efficiency of fat deposition and distribution. A further aim was to determine whether the extra fat deposition from different energy sources, and its distribution in the body, depends on feeding level. A total of fifty-eight individually housed pigs (48 (sd 4) kg) were used in a 3 x 2 factorial design study, with three energy sources (0.2 MJ digestible energy (DE)/kg0.75 per d of fNSP, dStarch and dUFA added to a control diet) at two feeding levels. Ten pigs were slaughtered at 48 (sd 4) kg body weight and treatment pigs at 106 (sd 3) kg body weight. Bodies were dissected and the chemical composition of each body fraction was determined. The effect of energy sources on fat and protein deposition was expressed relative to the control treatments within both energy intake levels based on a total of thirty-two observations in six treatments, and these marginal differences were subsequently treated as dependent variables. Results showed that preferential deposition of the supplemental energy intake in various fat depots did not depend on the energy source, and the extra fat deposition was similar at each feeding level. The marginal energetic transformation (energy retention; ER) of fNSP, dStarch and dUFA for fat retention (ERfat:DE) was 44, 52 and 49 % (P>0.05), respectively. Feeding level affected fat distribution, but source of energy did not change the relative partitioning of fat deposition. The present results do not support values of energetic efficiencies currently used in net energy-based system

    Effects of fermentable starch and straw-enriched housing on energy partitioning of growing pigs

    Get PDF
    Both dietary fermentable carbohydrates and the availability of straw bedding potentially affect activity patterns and energy utilisation in pigs. The present study aimed to investigate the combined effects of straw bedding and fermentable carbohydrates (native potato starch) on energy partitioning in growing pigs. In a 2 × 2 factorial arrangement, 16 groups of 12 pigs (approximately 25 kg) were assigned to either barren housing or housing on straw bedding, and to native or pregelatinised potato starch included in the diet. Pigs were fed at approximately 2.5 times maintenance. Nitrogen and energy balances were measured per group during a 7-day experimental period, which was preceded by a 30-day adaptation period. Heat production and physical activity were measured during 9-min intervals. The availability of straw bedding increased both metabolisable energy (ME) intake and total heat production (P <0.001). Housing conditions did not affect total energy retention, but pigs on straw bedding retained more energy as protein (P <0.01) and less as fat (P <0.05) than barren-housed pigs. Average daily gain (P <0.001), ME intake (P <0.001) and energy retention (P <0.01) were lower in pigs on the native potato starch diet compared to those on the pregelatinised potato starch diet. Pigs on the pregelatinised potato starch diet showed larger fluctuations in heat production and respiration quotient over the 24-h cycle than pigs on the native potato starch diet, and a higher activity-related energy expenditure. The effect of dietary starch type on activity-related heat production depended, however, on housing type (P <0.05). In barren housing, activity-related heat production was less affected by starch type (16.1% and 13.7% of total heat production on the pregelatinised and native potato starch diet, respectively) than in straw-enriched housing (21.1% and 15.0% of the total heat production on the pregelatinised and native potato starch diet, respectively). In conclusion, the present study shows that the availability both of straw bedding and of dietary starch type, fermentable or digestible, affects energy utilisation and physical activity of pigs. The effects of housing condition on protein and fat deposition suggest that environmental enrichment with long straw may result in leaner pigs. The lower energy expenditure on the physical activity of pigs on the native potato starch diet, which was the most obvious in straw-housed pigs, likely reflects a decrease in foraging behaviour related to a more gradual supply of energy from fermentation processes

    Relationships between methane production and milk fatty acid profiles in dairy cattle

    Get PDF
    There is a need to develop simple ways of quantifying and estimating CH4 production in cattle. Our aim was to evaluate the relationship between CH4 production and milk fatty acid (FA) profile in order to use milk FA profiles to predict CH4 production in dairy cattle. Data from 3 experiments with dairy cattle with a total of 10 dietary treatments and 50 observations were used. Dietary treatments included supplementation with calcium fumarate, diallyldisulfide, caprylic acid, capric acid, lauric acid, myristic acid, extruded linseed, linseed oil and yucca powder. Methane was measured using open circuit indirect respiration calorimetry chambers and expressed as g/kg dry matter (DM) intake. Milk FA were analyzed by gas chromatography and individual FA expressed as a fraction of total FA. To determine relationships between milk FA profile and CH4 production, univariate mixed model regression techniques were applied including a random experiment effect. A multivariate model was developed using a stepwise procedure with selection of FA based on the Schwarz Bayesian Information Criterion. Dry matter intake was 17.7 ± 1.83 kg/day, milk production was 27.0 ± 4.64 kg/day, and methane production was 21.5 ± 1.69 g/kg DM. Milk C8:0, C10:0, C11:0, C14:0 iso, C15:0 iso, C16:0 and C17:0 anteiso were positively related (

    Effects of exchanging lactose for fat in milk replacer on ad libitum feed intake and growth performance in dairy calves

    Get PDF
    The recent trend in the dairy industry toward ad libitum feeding of young calves merits reconsideration of calf milk replacer (CMR) formulations. Additionally, feed intake regulation in young calves provided with ad libitum milk and solid feeds is insufficiently understood. This study was designed to determine the effect of exchanging lactose for fat in CMR on voluntary feed intake and growth performance. Lactose was exchanged for fat on a weight/weight basis, resulting in different energy contents per kilogram of CMR. Thirty-two male calves (1.7 ± 0.12 d of age, 47.6 ± 0.83 kg of body weight) were assigned to 1 of 16 blocks based on arrival date. Within each block, calves were randomly assigned to 1 of 2 treatments. The experimental period was divided into 4 periods. In period 1, until 14 ± 1.7 d of age, calves were individually housed, restricted-fed their assigned CMR treatments at 2.5 to 3 L twice daily, and provided with unlimited access to water, chopped straw, and starter. In period 2, calves were group-housed with 8 calves per pen and received ad libitum access to their assigned CMR treatments, starter feed, chopped wheat straw, and water. During period 3, from 43 until 63 d of age, calves were weaned by restricting CMR allowance in 2 steps, maintaining access to all other feeds. All calves were completely weaned at d 64 of age and were monitored until 77 d of age (period 4). Measurements included the intake of all dietary components, body weight gain, and a selection of blood traits. Increasing fat content at the expense of lactose decreased CMR intake by 10%, whereas total calculated metabolizable energy intake and growth remained equal between treatments. Total solid feed (starter and straw) consumption was not affected by CMR composition. These data indicate that calves fed ad libitum regulate their CMR intake based on energy content. High-fat CMR increased plasma phosphate, nonesterified fatty acids, triglycerides, and bilirubin, whereas plasma glucose remained unchanged. Despite the limited animal numbers in the present experiment, there was a significant decrease in the total number of health events (mainly respiratory) requiring therapeutic intervention and in the total number of therapeutic interventions in calves fed high-fat CMR. Calves appeared to consume CMR based on energy content, with a difference in ad libitum intake proportional to the difference in energy content of the CMR, maintaining equal body weight gain and solid feed intake.</p

    The impact of low concentrations of aflatoxin, deoxynivalenol or fumonisin in diets on growing pigs and poultry

    Get PDF
    In the present review, the quantitative impact of dietary aflatoxin, deoxynivalenol (DON) and fumonisin concentrations on performance of pigs and broilers is evaluated, with special emphasis on low concentrations of these toxins. Also, responses in performance of pigs and broilers to these three toxins are related to their absorption and elimination kinetics. By applying simple linear regression, information from many literature sources is integrated and condensed into, for example, estimates of depression in rates of weight gain, relative to non-contaminated diets, with increasing toxin concentrations. It was estimated that with each mg/kg increase of aflatoxin in the diet, the growth rate would be depressed by 16 % for pigs and 5 % for broilers. For DON, with each mg/kg increase in the diet, the growth depression was estimated at about 8 % for pigs, while broilers showed no response to DON concentrations below 16 mg/kg. Fumonisin showed the lowest impact on growth performance; with each mg/kg increase, the depression in growth rate was estimated at 0·4 and 0·0 % for pigs and broilers, respectively. Dietary concentrations that cause a 5 % reduction in growth rate were estimated at 0·3 and 1·0 mg/kg for aflatoxin for pigs and broilers, respectively; 1·8 and 0·6 mg/kg for pure and naturally contaminated DON for pigs, respectively; 21 and 251 mg/kg for fumonisin for pigs and broilers, respectively

    High Speed Magnetic Tweezers at 100KHz with Superluminescent Diode Illumination

    Get PDF
    In the last decade, various applications of gaseous exchange measurements have been developed to quantify the production or consumption of particular gases by animals. Notably, booming research into methane emissions has led to an expansion of the number of facilities in which such measurements are made. Results of a ring test calibration of respiration chambers in the UK by Gardiner et al. (2015) confirmed our concern that not all research groups comply with the same standards of chamber operation

    Modelling of nutrient partitioning in growing pigs to predict their anatomical body composition. 2. Model evaluation

    Get PDF
    The objective of the present paper was to evaluate a dynamic mechanistic model for growing and fattening pigs presented in a companion paper. The model predicted the rate of protein and fat deposition (chemical composition), rate of tissue deposition (anatomical composition) and performance of pigs depending on nutrient intake. In the model evaluation, the predicted response of the pig to changes in model parameters and to changes in nutrient intakes is presented. As a result of the sensitivity analysis, changes in the maintenance energy requirements and the fractional degradation rate of muscle protein had the greatest impact on tissue deposition rates. The model was also highly sensitive to changes in the maximum velocity and steepness parameter of the lysine utilisation for muscle protein synthesis. The model was further tested by independent published results. The model successfully predicted the response of pigs to a wide range of variation in nutrient composition. Consequently, the model can be applied to develop feeding strategies to optimise pig production. It also enables prediction of the slaughter performance and the meat quality

    Modelling of nutrient partitioning in growing pigs to predict their anatomical body composition. 1. Model description

    Get PDF
    A dynamic mechanistic model was developed for growing and fattening pigs. The aim of the model was to predict growth rate and the chemical and anatomical body compositions from the digestible nutrient intake of gilts (20-105 kg live weight). The model represents the partitioning of digestible nutrients from intake through intermediary metabolism to body protein and body fat. State variables of the model were lysine, acetyl-CoA equivalents, glucose, volatile fatty acids and fatty acids as metabolite pools, and protein in muscle, hide-backfat, bone and viscera and body fat as body constituent pools. It was assumed that fluxes of metabolites follow saturation kinetics depending on metabolite concentrations. In the model, protein deposition rate depended on the availability of lysine and of acetyl-CoA. The anatomical body composition in terms of muscle, organs, hide-backfat and bone was predicted from the chemical body composition and accretion using allometric relationships. Partitioning of protein, fat, water and ash in muscle, organs, hide-backfat and bone fractions were driven by the rates of muscle protein and body fat deposition. Model parameters were adjusted to obtain a good fit of the experimental data from literature. Differential equations were solved numerically for a given set of initial conditions and parameter values. In the present paper, the model is presented, including its parameterisation. The evaluation of the model is described in a companion paper
    • …
    corecore